## Search

Now showing items 1-10 of 61

####
Preprint
No Chaos in Dixon's System

(2020)

The so-called Dixon system is often cited as an example of a two-dimensional (continuous) dynamical system that exhibits chaotic behaviour, if its two parameters take their value in a certain domain. We provide first a rigorous proof that there is no chaos in Dixon's system. Then we perform a complete bifurcation analysis of the system showing that the parameter space can be decomposed into sixteen different regions in each of which the system exhibits qualitatively the same behaviour. In particular, we prove that ...

####
Preprint
Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads

(2019-09-25)

We study a rate-independent system with non-convex energy and in the
case of a time-discontinuous loading. We prove existence of
the rate-dependent viscous regularization by time-incremental problems, while
the existence of the so called parameterized BV-solutions is obtained via
vanishing viscosity in a suitable parameterized setting. In addition, we prove
that the solution set is compact.

####
Preprint
Convergence analysis of time-discretization schemes for rate-independent systems

(2017-12-21)

It is well known that rate-independent systems involving nonconvex energy
functionals in general do not allow for time-continuous solutions even if the
given data are smooth. In the last years, several solution concepts were
proposed that include discontinuities in the notion of solution, among them
the class of global energetic solutions and the class of BV-solutions.
In general, these solution concepts are not equivalent and numerical schemes
are needed that reliably approximate that type of solutions ...

####
Preprint
On the existence of symmetric minimizers

(2018-01-23)

In this note we revisit a less known symmetrization method for functions with respect to a topological group, which we call G-averaging. We note that, although quite non-technical in nature, this method yields G-invariant minimizers of functionals satisfying some relaxed convexity properties. We give an abstract theorem and show how it can be applied to the p-Laplace and polyharmonic Poisson problem in order to construct symmetric solutions. We also pose some open problems and explore further possibilities where the ...

####
Preprint
Numerical simulation of tunnel fires using preconditioned finite volume schemes

(2006)

This article is concerned with the numerical simulation of flows at low Mach numbers which are subject to the gravitational force and strong heat sources. As a specific example for such flows, a fire event in a car tunnel will be considered in detail. The low Mach flow is treated with a preconditioning technique allowing the computation of unsteady flows, while the source terms for gravitation and heat are incorporated via operator splitting. It is shown that a first order discretization in space is not able to compute ...

####
Preprint
Mathematical problem solving, modelling, applications, and links to other subjects

(1989)

The paper will consist of three parts. In part I we shall present some background
considerations which are necessary as a basis for what follows. We
shall try to clarify some basic concepts and notions, and we shall collect
the most important arguments (and related goals) in favour of problem solving,
modelling and applications to other subjects in mathematics instruction.
In the main part II we shall review the present state, recent trends, and
prospective lines of development, both in empirical or theoretical ...

####
Preprint
Computations in Relative Algebraic K-Groups

(2007)

Let G be finite group and K a number field or a p-adic field with ring of integers O_K. In the first part of the manuscript we present an algorithm that computes the relative algebraic K-group K_0(O_K[G],K) as an abstract abelian group. We solve the discrete logarithm problem, both in K_0(O_K[G],K) and the locally free class group cl(O_K[G]). All algorithms have been implemented in MAGMA for the case K = \IQ. In the second part of the manuscript we prove formulae for the torsion subgroup of K_0(\IZ[G],\IQ) for large ...

####
Preprint
Computing Generators of Free Modules over Orders in Group Algebras

(2007)

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines ...

####
Preprint
Approximate approximations for the Poisson and the Stokes equations

(2006)

The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, ...

####
Preprint
Approximate Approximations and a Boundary Point Method for the Linearized Stokes System

(2007)

The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix
of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded ...